
Hitchhiker’s Guide to FlashForth
on PIC and AVR Microcontrollers

Interpreter
The outer interpreter looks for words and numbers delimited by
whitespace. Everything is interpreted as a word or a number.
Numbers are pushed onto the stack. Words are looked up and acted
upon. Names of words are limited to 15 characters.

Data and the stack
The data stack (S:) is directly accessible and has 32 16-bit cells for
holding numerical values. Functions get their arguments from the
stack and leave their results there as well. There is also a return
address stack (R:) that can be used for temporary storage.

Notation
n, n1, n2, n3 Single-cell integers (16-bit).
u, u1, u2 Unsigned integers (16-bit).
x, x1, x2, x3 Single-cell item (16-bit).
c Character value (8-bit).
d ud Double-cell signed and unsigned (32-bit).
t ut Triple-cell signed and unsigned (48-bit).
q uq Quad-cell signed and unsigned (64-bit).
f Boolean flag: 0 is false, -1 is true.
addr, addr1, addr2 16-bit addresses.
a-addr cell-aligned address.
c-addr character or byte address.

Numbers and values
2 Leave integer two onto the stack. (-- 2)

#255 Leave decimal 255 onto the stack. (-- 255)

%11 Leave integer three onto the stack. (-- 3)

$10 Leave integer sixteen onto the stack. (-- 16)

23. Leave double number on the stack. (-- 23 0)

decimal Set number format to base 10. (--)

hex Set number format to hexadecimal. (--)

bin Set number format to binary. (--)

s>d Sign extend single to double number. (n -- d)

Since double numbers have the most significant bits
in the cell above the least significant bits, you can
just drop the top cell to recover the single number,
provided that the value is not too large to fit in a
single cell.

d>q Extend double to quad-cell number. (d -- q)

Requires qmath.h to be loaded.

Displaying data

. Display a number. (n --)

u. Display u unsigned. (u --)

u.r Display u with field width n, 0 < n < 256. (u n --)

d. Display double number. (d --)

ud. Display unsigned double number. (ud --)

.s Display stack content (nondestructively).

.st Emit status string for base, current data section,
and display the stack contents. (--)

dump Display memory from address, for u bytes. (addr u --)

Stack manipulation

dup Duplicate top item. (x -- x x)

?dup Duplicate top item if nonzero. (x -- 0 | x x)

swap Swap top two items. (x1 x2 -- x2 x1)

over Copy second item to top. (x1 x2 -- x1 x2 x1)

drop Discard top item. (x --)

nip Remove x1 from the stack. (x1 x2 -- x2)

rot Rotate top three items. (x1 x2 x3 -- x2 x3 x1)

tuck Insert x2 below x1 in the stack. (x1 x2 -- x2 x1 x2)

pick Duplicate the u-th item on top.
(xu ... x0 u -- xu ... x0 xu)

2dup Duplicate top double-cell item. (d -- d d)

2swap Swap top two double-cell items. (d1 d2 -- d2 d1)

2over Copy second double item to top. (d1 d2 -- d1 d2 d1)

2drop Discard top double-cell item. (d --)

>r Send to return stack. S:(n --) R:(-- n)

r> Take from return stack. S:(-- n) R:(n --)

r@ Copy top item of return stack. S:(-- n) R:(n -- n)

rdrop Discard top item of return stack. S:(--) R:(n --)

sp@ Leave data stack pointer. (-- addr)

sp! Set the data stack pointer to address. (addr --)

Operators

Arithmetic with single-cell numbers

Some of these words require core.txt and math.txt.
+ Add. (n1 n2 -- n1+n2) sum
- Subtract. (n1 n2 -- n1-n2) difference
* Multiply. (n1 n2 -- n1*n2) product
/ Divide. (n1 n2 -- n1/n2) quotient
mod Divide. (n1 n2 -- n.rem) remainder
/mod Divide. (n1 n2 -- n.rem n.quot)

u/ Unsigned 16/16 to 16-bit division. (u1 u2 -- u2/u1)

u/mod Unsigned division. (u1 u2 -- u.rem u.quot)

16-bit/16-bit to 16-bit

1+ Add one. (n -- n1)

1- Subtract one. (n -- n1)

2+ Add two. (n -- n1)

2- Subtract 2 from n. (n -- n1)

2* Multiply by 2; Shift left by one bit. (u -- u1)

2/ Divide by 2; Shift right by one bit. (u -- u1)

*/ Scale. (n1 n2 n3 -- n1*n2/n3)

Uses 32-bit intermediate result.
*/mod Scale with remainder. (n1 n2 n3 -- n.rem n.quot)

Uses 32-bit intermediate result.
u*/mod Unsigned Scale u1*u2/u3 (u1 u2 u3 -- u.rem u.quot)

Uses 32-bit intermediate result.

abs Absolute value. (n -- u)

negate Negate n. (n -- -n)

?negate Negate n1 if n2 is negative. (n1 n2 -- n3)

min Leave minimum. (n1 n2 -- n)

max Leave maximum. (n1 n2 -- n)

umin Unsigned minimum. (u1 u2 -- u)

umax Unsigned maximum. (u1 u2 -- u)

Arithmetic with double-cell numbers

Some of these words require core.txt, math.txt and qmath.txt.
d+ Add double numbers. (d1 d2 -- d1+d2)

d- Subtract double numbers. (d1 d2 -- d1-d2)

m+ Add single cell to double number. (d1 n -- d2)

m* Signed 16*16 to 32-bit multiply. (n n -- d)

d2* Multiply by 2. (d -- d)

d2/ Divide by 2. (d -- d)

um* Unsigned 16x16 to 32 bit multiply. (u1 u2 -- ud)

ud* Unsigned 32x16 to 32-bit multiply. (ud u -- ud)

um/mod Unsigned division. (ud u1 -- u.rem u.quot)

32-bit/16-bit to 16-bit
ud/mod Unsigned division. (ud u1 -- u.rem ud.quot)

32-bit/16-bit to 32-bit
fm/mod Floored division. (d n -- n.rem n.quot)

sm/rem Symmetric division. (d n -- n.rem n.quot)

32-bit/16-bit to 16-bit.

dabs Absolute value. (d -- ud)

dnegate Negate double number. (d -- -d)

?dnegate Negate d if n is negative. (d n -- -d)

Arithmetic with triple- and quad-numbers

These words require core.txt, math.txt and qmath.txt.
qm+ Add double to a quad. (q1 d -- q2)

uq* Unsigned 32x32 to 64-bit multiply. (ud ud -- uq)

ut* Unsigned 32x16 to 48-bit multiply. (ud u -- ut)

ut/ Divide triple by single. (ut u -- ud)

uq/mod Divide quad by double. (uq ud -- ud-rem ud-quot)

Relational

= Leave true if x1 x2 are equal. (x1 x2 -- f)

<> Leave true if x1 x2 are not equal. (x1 x2 -- f)

< Leave true if n1 less than n2. (n1 n2 -- f)

> Leave true if n1 greater than n2. (n1 n2 -- f)

0= Leave true if n is zero. (n -- f)

Inverts logical value.
0< Leave true if n is negative. (n -- f)

within Leave true if xl <= x < xh. (x xl xh -- f)

u< Leave true if u1 < u2. (u1 u2 -- f)

u> Leave true if u1 > u2. (u1 u2 -- f)

d0= Leave true if d is zero. (d -- f)

d0< Leave true if d is negative. (d -- f)

d< Leave true if d1 < d2. (d1 d2 -- f)

d> Leave true if d1 > d2. (d1 d2 -- f)

Bitwise
invert Ones complement. (x -- x)

dinvert Invert double number. (du -- du)

and Bitwise and. (x1 x2 -- x)

or Bitwise or. (x1 x2 -- x)

xor Bitwise exclusive-or. (x -- x)

lshift Left shift by u bits. (x1 u -- x2)

rshift Right shift by u bits. (x1 u -- x2)

Interaction with the operator
Interaction with the user is via the serial port, typically UART1.
Settings are 38400 baud, 8N1, using Xon/Xoff handshaking.
tx0 Send a character via the USB UART. (c --)

rx0 Receive a character from the USB UART. (-- c)

Use hardware flow control.

tx1 Send character to UART1. (c --)

Buffered via a 32 byte interrupt driven queue.
rx1 Receive a character from UART1. (-- c)

Has a 64-byte interrupt buffer.
rx1? Leave the number of characters in queue. (-- n)

u1- Disable flow control for operator interface. (--)

u1+ Enable flow control for operator interface, default. (--)

emit Emit c to the serial port FIFO. (c --)

FIFO is 46 chars. Executes pause.
space Emit one space character. (--)

spaces Emit n space characters. (n --)

cr Emit carriage-return, line-feed. (--)

key Get a character from the serial port FIFO.
Execute pause until a character is available. (-- c)

key? Leave true if character is waiting
in the serial port FIFO. (-- f)

Other Hardware
cwd Clear the WatchDog counter. (--)

ei Enable interrupts. (--)

di Disable interrupts. (--)

ms Pause for +n milliseconds. (+n --)

ticks System ticks, 0–ffff milliseconds. (-- u)

Memory
Typically, the microcontroller has three distinct memory contexts:
Flash, EEPROM and SRAM. FlashForth unifies these memory
spaces into a single 64kB address space.

PIC18 Memory map
The address ranges are:
$0000 – $ebff Flash
$ec00 – $efff EEPROM
$f000 – $ff5f SRAM, general use
$ff60 – $ffff SRAM, special function registers
The high memory mark for each context will depend on the
particular device used. Using a PIC18F26K22 and the default values
in p18f-main.cfg for the UART version of FF, a total of 423 bytes
is dedicated to the FF system. The rest (3473 bytes) is free for
application use. Also, the full 64kB of Flash memory is truncated to
fit within the range specified above.

PIC24 Memory map

A device with EEPROM will have its 64kB address space divided
into:
$0000 – $07ff SRAM, special function registers
$0800 – ($0800+RAMSIZE-1) SRAM, general use
($0800+RAMSIZE) – $fbff Flash
$fc00 – $ffff EEPROM
The high memory mark for the Flash context will depend on the
device. Also, the full Flash memory of the device may not be
accessible.

AVR8 Memory map

All operations are restricted to 64kB byte address space that is
divided into:
$0000 – (RAMSIZE-1) SRAM
RAMSIZE – (RAMSIZE+EEPROMSIZE-1) EEPROM
($ffff-FLASHSIZE+1) – $ffff Flash
The SRAM space includes the IO-space and special function
registers. The high memory mark for the Flash context is set by the
combined size of the boot area and FF kernel.

Memory Context

ram Set address context to SRAM.
eeprom Set address context to EEPROM.
flash Set address context to Flash.
fl- Disable writes to Flash, EEPROM.
fl+ Enable writes to Flash, EEPROM, default.
lock Disable writes to Flash, EEPROM.

here Leave the current data section dictionary
pointer. (-- addr)

align Align the current data section dictionary
pointer to cell boundary. (--)

hi Leave the high limit of the current
data space. (-- u)

Accessing Memory

! Store x to address. (x a-addr --)

@ Fetch from address. (a-addr -- x)

c! Store character to address. (c addr --)

c@ Fetch character from address. (addr -- c)

c@+ Fetch char, increment address.
(addr1 -- addr2 c)

+! Add n to cell at address. (n addr --)

-@ Fetch from addr and decrement addr by 2.
(addr1 -- addr2 x)

cf! Store to Flash memory. (dataL dataH addr --)

PIC24-30-33 only.
cf@ Fetch from Flash memory. (addr -- dataL dataH)

PIC24-30-33 only.

Accessing bits in RAM

mset Set bits in file register with mask c. (c addr --)

For PIC24-30-33, the mask is 16 bits.
mclr Clear bits in file register with mask c. (c addr --)

mtst AND file register byte with mask c. (c addr -- x)

The following come from bit.txt
bit1: name Define a word to set a bit. (addr bit --)

bit0: name Define a word to clear a bit. (addr bit --)

bit?: name Define a word to test a bit. (addr bit --)

When executed, name leaves a flag. (-- f)

For manipulating bits in the ATmega IO-space, the following come
from bio.txt
bio1: name Define a word to set a bit. (io-addr bit --)

bio0: name Define a word to clear a bit. (io-addr bit --)

bio?: name Define a word to test a bit. (io-addr bit --)

When executed, name leaves a flag. (-- f)

Constants and Variables

constant name Define new constant. (n --)

2constant name Define double constant. (x x --)

name Leave value on stack. (-- n)

variable varname Define variable in address context. (--)

2variable name Define double variable. (--)

varname Leave address on stack. (-- addr)

value valname Define value. (n --)

to valname Assign new value to valname. (n --)

valname Leave value on stack. (-- n)

Examples

ram Set SRAM context for variables and
values. Be careful not to accidentally
define variables in EEPROM or Flash
memory. That memory wears quickly
with multiple writes.

$ff81 constant portb Define constant in Flash.
3 value xx Define value in SRAM.
variable yy Define variable in SRAM.
6 yy ! Store 6 in variable yy.
eeprom 5 value zz ram Define value in EEPROM.
xx yy zz portb yy @ Leaves 3 f172 5 ff81 6

warm Warm restart clears SRAM data.
xx yy zz portb yy @ Leaves 0 f172 5 ff81 0

4 to xx Sets new value.
xx yy zz portb yy @ Leaves 4 f172 5 ff81 0

hi here - u. Prints the number of bytes free.
$ff8a constant latb PortB latch for the PIC18.
$ff93 constant trisb PortB direction-control register.
%00000010 trisb mclr Sets RB1 as output.
latb 1 bit1: pb1-high Defines a word to set RB1 high.
pb1-high Sets RB1 high.

Converting between cells, chars

cells Convert cells to address units. (u -- u)

chars Convert chars to address units. (u -- u)

char+ Add one to address. (addr1 -- addr2)

cell+ Add size of cell to address. (addr1 -- addr2)

aligned Align address to a cell boundary. (addr -- a-addr)

Memory operations

Some of these words come from core.txt.
cmove Move u bytes from address-1 to address-2.

(addr1 addr2 u --)

Copy proceeds from low addr to high address.
fill Fill u bytes with c starting at address.

(addr u c --)

erase Fill u bytes with 0 starting at address.
(addr u --)

blanks Fill u bytes with spaces starting at address.
(addr u --)

The P register

The P register can be used as a variable or as a pointer. It can be
used in conjunction with for..next or at any other time.
!p Store address to P(ointer) register. (addr --)

@p Fetch the P register to the stack. (-- addr)

!p>r Push contents of P to return stack and
store new address to P. (addr --) (R: -- addr)

r>p Pop from return stack to P register. (R: addr --)

p+ Increment P register by one. (--)

p2+ Add 2 to P register. (--)

p++ Add n to the p register. (n --)

p! Store x to the location pointed to
by the p register. (x --)

pc! Store c to the location pointed to
by the p register. (c --)

p@ Fetch the cell pointed to
by the p register. (-- x)

pc@ Fetch the char pointed to
by the p register. (-- c)

In a definition !p>r and r>p should always be used to allow proper
nesting of words.

Predefined constants

cell Size of one cell in characters. (-- n)

true Boolean true value. (-- -1)

false Boolean false value. (-- 0)

bl ASCII space. (-- c)

Fcy Leave the cpu instruction-cycle frequency in kHz. (-- u)

ti# Size of the terminal input buffer. (-- u)

Predefined variables

base Variable containing number base. (-- a-addr)

irq Interrupt vector (SRAM variable). (-- a-addr)

Always disable user interrupts and clear
related interrupt enable bits before zeroing
interrupt vector.
di false to irq ei

turnkey Vector for user start-up word. (-- a-addr)

EEPROM value mirrored in SRAM.
prompt Deferred execution vector for the info displayed

by quit. (-- a-addr)

’emit EMIT vector. Default is TX1. (-- a-addr)

’key KEY vector. Default is RX1. (-- a-addr)

’key? KEY? vector. Default is RX1. (-- a-addr)

’source Current input source. (-- a-addr)

s0 Variable for start of data stack. (-- a-addr)

rcnt Number of saved return stack cells. (-- a-addr)

tib Address of the terminal input buffer. (-- a-addr)

tiu Terminal input buffer pointer. (-- a-addr)

>in Variable containing the offset, in characters,
from the start of tib to the current
parse area. (-- a-addr)

pad Address of the temporary area for strings. (-- addr)

: pad tib ti# + ;

Each task has its own pad but has zero default size.
If needed the user must allocate it separately
with allot for each task.

dp Leave the address of the current data section
dictionary pointer. (-- addr)

EEPROM variable mirrored in RAM.
hp Hold pointer for formatted numeric

output. (-- a-addr)

latest Variable holding the address of the latest
defined word. (-- a-addr)

Characters

digit? Convert char to a digit according to base.
(c -- n)

>digit Convert n to ascii character value. (n -- c)

char char Parse a character and leave ASCII value. (-- n)

For example: char A (-- 65)

[char] char Compile inline ASCII character. (--)

Strings

Some of these words come from core.txt.
s" text" Compile string into flash. (--)

At run time, leaves address and length.
(-- addr u)

." text" Compile string to print into flash.
(--)

place Place string from a1 to a2
as a counted string. (addr1 u addr2 --)

count Leave the address and length of text portion
of a counted string (addr1 -- addr2 n)

n= Compare strings in RAM(a) and flash(nfa).
Leave true if strings match, n < 16.
(addr nfa u -- f)

/string Trim string. (addr u n -- addr+n u-n)

>number Convert string to a number.
(0 0 addr1 u1 -- ud.l ud.h addr2 u2)

number? Convert string to a number and flag.
(addr1 -- addr2 0 | n 1 | d.l d.h 2)

Prefix: # decimal, $ hexadecimal, % binary.

type Type line to terminal, u < $100. (addr u --)

accept Get line from the terminal. (c-addr +n1 -- +n2)

At most n1 characters are accepted, until the line
is terminated with a carriage return.

source Leave address and length of input buffer.
(-- c-addr u)

evaluate Interpret a string in SRAM. (addr n --)

Pictured numeric output

Formatted string representing an unigned double-precision integer is
constructed in the end of tib.
<# Begin conversion to formatted string. (--)

Convert 1 digit to formatted string. (ud1 -- ud2)

#s Convert remaining digits. (ud1 -- ud2)

Note that ud2 will be zero.
hold Append char to formatted string. (c --)

sign Add minus sign to formatted string, if n<0. (n --)

#> End conversion, leave address and count
of formatted string. (ud1 -- c-addr u)

For example, the following:
-1 34. <# # # #s rot sign #> type

results in -034 ok

Defining functions

Colon definitions

: Begin colon definition. (--)

; End colon definition. (--)

[Enter interpreter state. (--)

] Enter compilation state. (--)

[i Enter Forth interrupt context. (--)

i] Enter compilation state. (--)

;i End an interrupt word. (--)

literal Compile value on stack at compile time.
At run time, leave value on stack. (-- x)

inline name Inline the following word. (--)

inlined Mark the last compiled word as inlined. (--)

immediate Mark latest definition as immediate. (--)

postpone name Postpone action of immediate word. (--)

see name Show definition. Load see.txt.

Comments

(comment text) Inline comment.
\ comment text Skip rest of line.

Examples

: square (n -- n**2) Example with stack comment.
dup * ; ...body of definition.

: poke0 (--) Example of using PIC18 assembler.
[$f8a 0 a, bsf,] ;

Flow control

Structured flow control

if xxx else yyy then Conditional execution. (f --)

begin xxx again Infinite loop. (--)

begin xxx cond until Loop until cond is true. (--)

begin xxx cond while Loop while cond is true. (--)

yyy repeat yyy is not executed on the last iteration.
for xxx next Loop u times. (u --)

r@ gets the loop counter u-1 ... 0
endit Sets loop counter to zero so that we leave

a for loop when next is encountered.
(--)

From doloop.txt, we get the ANSI loop constructs which iterate
from initial up to, but not including, limit :
limit initial do words-to-repeat loop

limit initial do words-to-repeat value +loop

i Leave the current loop index. (-- n)

Innermost loop, for nested loops.
j Leave the next-outer loop index. (-- n)

leave Leave the do loop immediately. (--)

Loop examples

decimal

: sumdo 0 100 0 do i + loop ; sumdo leaves 4950
: sumfor 0 100 for r@ + next ; sumfor leaves 4950
: print-twos 10 0 do i u. 2 +loop ;

Case example

From case.txt, we get words case, of, endof, default and endcase

to define case constructs.
: testcase

4 for r@

case

0 of ." zero " endof

1 of ." one " endof

2 of ." two " endof

default ." default " endof

endcase

next

;

Unstructured flow control

exit Exit from a word. (--)

If exiting from within a for loop,
we must drop the loop count with rdrop.

?abort If flag is false, print message
and abort. (f addr u --)

?abort? If flag is false, output ? and abort. (f --)

abort" xxx" if flag, type out last word executed,
followed by text xxx. (f --)

quit Interpret from keyboard. (--)

warm Make a warm start.
Note that irq vector is cleared.

Function pointers (vectors)

’ name Search for name and leave its
execution token (address). (-- addr)

[’] name Search for name and compile
it’s execution token. (--)

execute Execute word at address. (addr --)

The actual stack effect will depend on
the word executed.

@ex Fetch vector from addr and execute.
(addr --)

defer vec-name Define a deferred execution vector. (--)

is vec-name Store execution token in vec-name.
(addr --)

vec-name Execute the word whose execution token
is stored in vec-name’s data space.

int! Store interrupt vector to table. (xt n --)

PIC18: n is dummy vector number (0).
PIC30: Alternate interrupt vector table in Flash.
PIC33: Alternate interrupt vector table in RAM.
PIC24: Alternate interrupt vector table in RAM.
ATmega: Interrupt vector table in RAM.

Autostart example

’ my-app is turnkey Autostart my-app.
false is turnkey Disable turnkey application.

Interrupt example

ram variable icnt1 ...from FF source.
: irq_forth It’s a Forth colon definition

[i ...in the Forth interrupt context.
icnt1 @ 1+

icnt1 !

]i

;i

’ irq_forth 0 int! Set the user interrupt vector.

: init Alternatively, compile a word
[’] irq_forth 0 int! ...so that we can install the

; ...interrupt service function
’ init is turnkey ...at every warm start.

Multitasking
Load the words for multitasking from task.txt.

task Define a new task in flash memory space
(tibsize stacksize rsize addsize --)

Use ram xxx allot to leave space for the PAD
of the prevously defined task.
The OPERATOR task does not use PAD.

tinit Initialise a user area and link it
to the task loop. (taskloop-addr task-addr --)

Note that this may only be executed from
the operator task.

run Makes a task run by inserting it after operator
in the round-robin linked list. (task-addr --)

May only be executed from the operator task.
end Remove a task from the task list. (task-addr --)

May only be executed from the operator task.
single End all tasks except the operator task. (--)

Removes all tasks from the task list.
May only be executed from the operator task.

tasks List all running tasks. (--)

pause Switch to the next task in the
round robin task list. (--)

his Access user variables of other task.
(task.addr vvar.addr -- addr)

load Leave the CPU load on the stack. (-- n)

Load is percentage of time that the CPU is busy.
Updated every 256 milliseconds.

busy CPU idle mode not allowed. (--)

idle CPU idle is allowed. (--)

operator Leave the address of the operator task. (--)

ulink Link to next task. (-- addr)

Defining compound data objects
create name Create a word definition and store

the current data section pointer.
does> Define the runtime action of a created word.

allot Advance the current data section dictionary
pointer by u bytes. (u --)

, Append x to the current data section. (x --)

c, Append c to the current data section. (c --)

cf, Compile xt into the flash dictionary. (addr --)

c>n Convert code field addr to name field addr.
(addr1 -- addr2)

n>c Convert name field addr to code field addr.
(addr1 -- addr2)

," xxx" Append a string at HERE. (--)

Array examples
ram Example
create my-array 20 allot ...of creating an array,
my-array 20 $ff fill ...filling it with 1s, and
my-array 20 dump ...displaying its content.

create my-cell-array

100 , 340 , 5 , Initialised cell array.
my-cell-array 2 cells + @ Should leave 5. (-- x)

create my-byte-array

18 c, 21 c, 255 c, Initialised byte array.
my-byte-array 2 chars + c@ Should leave 255. (-- c)

: mk-byte-array Defining word (n --)

create allot ...to make byte array objects
does> + ; ...as shown in FF user’s guide.

10 mk-byte-array my-bytes Creates an array object
my-bytes (n -- addr).

18 0 my-bytes c! Sets an element
21 1 my-bytes c! ...and another.
255 2 my-bytes c!

2 my-bytes c@ Should leave 255.

: mk-cell-array Defining word (n --)

create cells allot ...to make cell array objects.
does> swap cells + ;

5 mk-cell-array my-cells Creates an array object
my-cells (n -- addr).

3000 0 my-cells ! Sets an element
45000 1 my-cells ! ...and another.
63000 2 my-cells !

1 my-cells @ . Should print 45000

Dictionary manipulation

marker -my-mark Mark the dictionary and memory
allocation state with -my-mark.

-my-mark Return to the dictionary and allotted-memory
state that existed before -my-mark was created.

find name Find name in dictionary. (-- n)

Leave 1 immediate, -1 normal, 0 not found.
forget name Forget dictionary entries back to name.
empty Reset all dictionary and allotted-memory

pointers. (--)

words List words in dictionary. (--)

Structured Assembler
To use many of the words listed in the following sections, load the
text file asm.txt. The assembler for each processor family provides
the same set of structured flow control words, however, the
conditionals that go with these words are somewhat
processor-specific.
if, xxx else, yyy then, Conditional execution. (cc --)

begin, xxx again, Loop indefinitely. (--)

begin, xxx cc until, Loop until condion is true. (--)

Assembler words for PIC18
In the stack-effect notaion for the PIC18 family, f is a file register
address, d is the result destination, a is the access bank modifier,
and k is a literal value.

Conditions for structured flow control

cc, test carry (-- cc)

nc, test not carry (-- cc)

mi, test negative (-- cc)

pl, test not negative (-- cc)

z, test zero (-- cc)

nz, test not zero (-- cc)

ov, test overflow (-- cc)

nov, test not overflow (-- cc)

not, invert condition (cc -- not-cc)

Destination and access modifiers

w, Destination WREG (-- 0)

f, Destination file (-- 1)

a, Access bank (-- 0)

b, Use bank-select register (-- 1)

Byte-oriented file register operations

addwf, Add WREG and f. (f d a --)

addwfc, Add WREG and carry bit to f. (f d a --)

andwf, AND WREG with f. (f d a --)

clrf, Clear f. (f a --)

comf, Complement f. (f d a --)

cpfseq, Compare f with WREG, skip if equal. (f a --)

cpfsgt, Compare f with WREG, skip if greater than. (f a --)

cpfslt, Compare f with WREG, skip if less than. (f a --)

decf, Decrement f. (f d a --)

decfsz, Decrement f, skip if zero. (f d a --)

dcfsnz, Decrement f, skip if not zero. (f d a --)

incf, Increment f. (f d a --)

incfsz, Increment f, skip if zero. (f d a --)

infsnz, Increment f, skip if not zero. (f d a --)

iorwf, Inclusive OR WREG with f. (f d a --)

movf, Move f. (f d a --)

movff, Move fs to fd. (fs fd --)

movwf, Move WREG to f. (f a --)

mulwf, Multiply WREG with f. (f a --)

negf, Negate f. (f a --)

rlcf, Rotate left f, through carry. (f d a --)

rlncf, Rotate left f, no carry. (f d a --)

rrcf, Rotate right f, through carry. (f d a --)

rrncf, Rotate right f, no carry. (f d a --)

setf, Set f. (f d a --)

subfwb, Subtract f from WREG, with borrow. (f d a --)

subwf, Subtract WREG from f. (f d a --)

subwfb, Subtract WREG from f, with borrow. (f d a --)

swapf, Swap nibbles in f. (f d a --)

tstfsz, Test f, skip if zero. (f a --)

xorwf, Exclusive OR WREG with f. (f d a --)

Bit-oriented file register operations

bcf, Bit clear f. (f b a --)

bsf, Bit set f. (f b a --)

btfsc, Bit test f, skip if clear. (f b a --)

btfss, Bit test f, skip if set. (f b a --)

btg, Bit toggle f. (f b a --)

Literal operations

addlw, Add literal and WREG. (k --)

andlw, AND literal with WREG. (k --)

daw, Decimal adjust packed BCD digits in WREG. (--)

iorlw, Inclusive OR literal with WREG. (k --)

lfsr, Move literal to FSRx. (k f --)

movlb, Move literal to BSR. (k --)

movlw, Move literal to WREG. (k --)

mullw, Multiply literal with WREG. (k --)

sublw, Subtract WREG from literal. (k --)

xorlw, Exclusive OR literal with WREG. (k --)

Data memory – program memory operations
tblrd*, Table read. (--)

tblrd*+, Table read with post-increment. (--)

tblrd*-, Table read with post-decrement. (--)

tblrd+*, Table read with pre-increment. (--)

tblwt*, Table write. (--)

tblwt*+, Table write with post-increment. (--)

tblwt*-, Table write with post-decrement. (--)

tblwt+*, Table write with pre-increment. (--)

Low-level flow control operations
bra, Branch unconditionally. (rel-addr --)

call, Call subroutine. (addr --)

goto, Go to address. (addr --)

pop, Pop (discard) top of return stack. (--)

push, Push address of next instruction to
top of return stack. (--)

rcall, Relative call. (rel-addr --)

retfie, Return from interrupt enable. (--)

retlw, Return with literal in WREG. (k --)

return, Return from subroutine. (--)

Other MCU control operations
clrwdt, Clear watchdog timer. (--)

nop, No operation. (--)

reset, Software device reset. (--)

sleep, Go into standby mode. (--)

Assembler words for PIC24-30-33
As stated in the wordsAll.txt, there is only a partial set of words
for these families of microcontrollers.

Conditions for structured flow control
z, test zero (-- cc)

nz, test not zero (-- cc)

not, invert condition (cc -- not-cc)

Low-level flow control operations
bra, Branch unconditionally. (rel-addr --)

rcall, Call subroutine. (rel-addr --)

return, Return from subroutine. (--)

retfie, Return from interrupt enable. (--)

Bit-oriented operations
bclr, Bit clear. (bit ram-addr --)

bset, Bit set. (bit ram-addr --)

btst, Bit test to z. (bit ram-addr --)

btsc, Bit test, skip if clear. (bit ram-addr --)

btss, Bit test, skip if set. (bit ram-addr --)

Assembler words for AVR8
For the ATmega instructions, Rd denotes the destination (and
source) register, Rr denotes the source register, Rw denotes a
register-pair code, K denotes constant data, k is a constant address, b
is a bit in the register, x,Y,Z are indirect address registers, A is an
I/O location address, and q is a displacement (6-bit) for direct
addressing.

Conditions for structured flow control
cs, carry set (-- cc)

eq, zero (-- cc)

hs, half carry set (-- cc)

ie, interrupt enabled (-- cc)

lo, lower (-- cc)

lt, less than (-- cc)

mi, negative (-- cc)

ts, T flag set (-- cc)

vs, no overflow (-- cc)

not, invert condition (cc -- not-cc)

Register constants

Z (-- 0)

Z+ (-- 1)

-Z (-- 2)

Y (-- 8)

Y+ (-- 9)

-Y (-- 10)

X (-- 12)

X+ (-- 13)

-X (-- 14)

XH:XL (-- 01)

YH:YL (-- 02)

ZH:ZL (-- 03)

R0 (-- 0) R16 (-- 16)

R1 (-- 1) R17 (-- 17)

R2 (-- 2) R18 (-- 18)

R3 (-- 3) R19 (-- 19)

R4 (-- 4) R20 (-- 20)

R5 (-- 5) R21 (-- 21)

R6 (-- 6) R22 (-- 22)

R7 (-- 7) R23 (-- 23)

R8 (-- 8) R24 (-- 24)

R9 (-- 9) R25 (-- 25)

R10 (-- 10) R26 (-- 26)

R11 (-- 11) R27 (-- 27)

R12 (-- 12) R28 (-- 28)

R13 (-- 13) R29 (-- 29)

R14 (-- 14) R30 (-- 30)

R15 (-- 15) R31 (-- 31)

Arithmetic and logic instructions

add, Add without carry. (Rd Rr --)

adc, Add with carry. (Rd Rr --)

adiw, Add immediate to word. (Rw K --)

Rw = {XH:XL,YH:YL,ZH:ZL}

sub, Subtract without carry. (Rd Rr --)

subi, Subtract immediate. (Rd K --)

sbc, Subtract with carry. (Rd Rr --)

sbci, Subtract immediate with carry. (Rd K --)

sbiw, Subtract immediate from word. (Rw K --)

Rw = {XH:XL,YH:YL,ZH:ZL}

and, Logical AND. (Rd Rr --)

andi, Logical AND with immediate. (Rd K --)

or, Logical OR. (Rd Rr --)

ori, Logical OR with immediate. (Rd K --)

eor, Exclusive OR. (Rd Rr --)

com, One’s complement. (Rd --)

neg, Two’s complement. (Rd --)

sbr, Set bit(s) in register. (Rd K --)

cbr, Clear bit(s) in register. (Rd K --)

inc, Increment. (Rd --)

dec, Decrement. (Rd --)

tst, Test for zero or minus. (Rd --)

clr, Clear register. (Rd --)

ser, Set register. (Rd --)

mul, Multiply unsigned. (Rd Rr --)

muls, Multiply signed. (Rd Rr --)

mulsu Multiply signed with unsigned. (Rd Rr --)

fmul, Fractional multiply unsigned. (Rd Rr --)

fmuls, Fractional multiply signed. (Rd Rr --)

fmulsu, Fractional multiply signed with unsigned. (Rd Rr --)

Branch instructions

rjmp, Relative jump. (k --)

ijmp, Indirect jump to (Z). (--)

eijmp, Extended indirect jump to (Z). (--)

jmp, Jump. (k16 k6 --)

k6 is zero for a 16-bit address.

rcall, Relative call subroutine. (k --)

icall, Indirect call to (Z). (--)

eicall, Extended indirect call to (Z). (--)

call, Call subroutine. (k16 k6 --)

k6 is zero for a 16-bit address.
ret, Subroutine return. (--)

reti, Interrupt return. (--)

cpse, Compare, skip if equal. (Rd Rr --)

cp, Compare. (Rd Rr --)

cpc, Compare with carry. (Rd Rr --)

cpi, Compare with immediate. (Rd K --)

sbrc, Skip if bit in register cleared. (Rr b --)

sbrs, Skip if bit in register set. (Rr b --)

sbic, Skip if bit in I/O register cleared. (A b --)

sbis, Skip if bit in I/O register set. (A b --)

Data transfer instructions

mov, Copy register. (Rd Rr --)

movw, Copy register pair. (Rd Rr --)

ldi, Load immediate. (Rd K --)

lds, Load direct from data space. (Rd K --)

ld, Load indirect. (Rd Rr --)

Rr = {X,X+,-X,Y,Y+,-Y,Z,Z+,-Z}

ldd, Load indirect with dosplacement. (Rd Rr q --)

Rr = {Y,Z}

sts, Store direct to data space. (k Rr --)

st, Store indirect. (Rr Rd --)

Rd = {X,X+,-X,Y,Y+,-Y,Z,Z+,-Z}

std, Store indirect with displacement. (Rr Rd q --)

Rd={Y,Z}

in, In from I/O location. (Rd A --)

out, Out to I/O location. (Rr A --)

push, Push register on stack. (Rr --)

pop, Pop register from stack. (Rd --)

Bit and bit-test instructions

lsl, Logical shift left. (Rd --)

lsr, Logical shift right. (Rd --)

rol, Rotate left through carry. (Rd --)

ror, Rotate right through carry. (Rd --)

asr, Arithmetic shift right. (Rd --)

swap, Swap nibbles. (Rd --)

bset, Flag set. (s --)

bclr, Flag clear. (s --)

sbi, Set bit in I/O register. (A b --)

cbi, Clear bit in I/O register. (A b --)

bst, Bit store from register to T. (Rr b --)

bld, Bit load from T to register. (Rd b --)

sec, Set carry. (--)

clc, Clear carry. (--)

sen, Set negative flag. (--)

cln, Clear negative flag. (--)

sez, Set zero flag. (--)

clz Clear zero flag. (--)

sei, Global interrupt enable. (--)

cli, Global interrupt disable. (--)

ses, Set signed test flag. (--)

cls, Clear signed test flag. (--)

sev, Set two’s complement overflow. (--)

clv, Clear two-s complement overflow. (--)

set, Set T in SREG. (--)

clt, Clear T in SREG. (--)

seh, Set half carry flag in SREG. (--)

clh, Clear half carry flag in SREG. (--)

MCU control instructions

break, Break. (--)

nop, No operation. (--)

sleep, Sleep. (--)

wdr, Watchdog reset. (--)

Extras
I2C communications as master
Load these words from i2c_base.txt for a PIC18 microcontroller.
i2cinit Initializes I2C master mode, 100 kHz clock. (--)

i2cws Wake slave. Bit 0 is R/W bit. (slave-addr --)

The 7-bit I2C address is in bits 7-1.
i2c! Write one byte to I2C bus and wait for ACK. (c --)

i2c@ak Read one byte and continue. (-- c)

i2c@nak Read one last byte from the I2C bus. (-- c)

i2c-addr1 Write 8-bit address to slave. (addr slave-addr --)

i2c-addr2 Write 16-bit address to slave (addr slave-addr --)

Lower-level words.

ssen Assert start condition. (--)

srsen Assert repeated start condition. (--)

spen Generate a stop condition. (--)

srcen Set receive enable. (--)

snoack Send not-acknowledge. (--)

sack Send acknowledge bit. (--)

sspbuf! Write byte to SSPBUF and wait for
transmission. (c --)

This guide assembled by Peter Jacobs, School of Mechanical Engineering,
The University of Queensland, May-2014 as Report 2014/03.
It is a remix of material from the following sources:
FlashForth v5.0 source code and word list by Mikael Nordman
http://flashforth.sourceforge.net/

EK Conklin and ED Rather Forth Programmer’s Handbook 3rd Ed.
2007 FORTH, Inc.
L Brodie Starting Forth 2nd Ed., 1987 Prentice-Hall Software Series.
Robert B. Reese Microprocessors from Assembly Language to C Using
the PIC18Fxx2 Da Vinci Engineering Press, 2005.
Microchip 16-bit MCU and DSC Programmers Reference Manual
Document DS70157F, 2011.
Atmel 8-bit AVR Insturction Set Document 08561-AVR-07/10.

