This gives the sphere a slightly clouded look as if not all of the light was able to pass through it. For interesting variations of this texture, try lowering ior to 1.15 and raising reflection to 0.5.
Once we know what we are looking for we will be able to spot caustics in many everyday situations: the shadow cast by a magnifying glass has one, light streaming through an aquarium might makes them, the light passing through a piece of crumpled cellophane might cast them on the table top, etc. We will even see them in the bottom of a swimming pool on a bright sunny day. Caustics are a subtle lighting effect that can really lend realism to raytraced images of such items.
POV-Ray uses algorithms that fake refractive caustics (reflective caustices are not possible).There are inherant limitations on the process of (standard) ray-tracing in general which make it unsuitable for certain light simulation applications, such as optical testing and a few very particular architectural lighting projects. Methods which do the considerably more extensive calculations needed to do full light simulation including caustics (like path-tracing, photon-tracing or bi-directional ray-tracing) are very slow and impractical on average platforms.
This means that we have to tinker with the caustics to get the best possible look, but with a little experimentation, we will see we can very closely emulate the real thing. The best way to go is, where ever possible, to study an example of the thing we are trying to trace. We need to get to know its pattern of caustics and then adjust our final picture until we are satisfied.
When we render this we will see our sphere in the upper right corner of the image, floating a little over the plane, and the shadow it casts is sprawled across the central part of our view. And there in the center is a basic caustic. That bright area in the center represents the light which normally refractivity would concentrate in the middle of the shadow.
The only question this leaves is: what is with the floating point value which follows the caustics keyword? Well, that's where our discussion above on adjusting the caustic comes in. Remember the drinking glasses? If we had one that had fairly thin walls and then a thick glass base we will see what we mean in the shadows it casts. Above, with the thinner walls (with less refraction) the caustics are less pronounced and more evenly diffused through the shadow, but when we get to the part of the shadow cast by the thicker, more refractive base, suddenly the caustic becomes more pronounced and more tightly focused near the center.
Of course, since this is a simulated caustic, there is no correspondence between the degree to which the caustic is focused or diffused and the shape, size and refractivity of the object. But we can manually control it with the floating point value following the caustic keyword. The closer this value gets to zero, the more diffused and dimmer the caustic gets, while the nearer it becomes to 1, the more tightly focused and pronounced the caustic gets. At 1, we have the caustic of a thick, highly refractive piece of lead crystal, while at 0.1 it is more like a hollow glass sphere. We try this by re-rendering the above scene, with a range of values from 0.1 to 1.0 and watching the different caustics we get.
Out of range values work also. Numbers higher than 1 just lead to more and more tightly focused caustics. Negative numbers are just plain weird, but interesting. Essentially, the object becomes illuminated in all sorts of bizzare ways and the shadow becomes like a photographic negative of itself. Kind of like a 1950's sci-fi raygun effect. It looks strange, and not at all photo-realistic, but if we like the surreal we may want to try it at least once and file away the effect in our mind in case we ever want it.
Caustics are also a synthetic trick, as we saw above, and sure enough, they have been designed to react to texture normal patterns as if those patterns were genuinely there. Remember the drinking glass experiment? If we found a glass with patterns etched into the surface we probably noted that the pattern showed up in the caustics cast by the glass too. When we have a transparent surface with a normal applied to it, it causes the caustics cast by that surface to mimick the normal pattern, so that it shows up in the shadows.
Following is an example of what we mean: it is a simply meant to represent water in a swimming pool. We have distilled this down to a plane above to represent the water, one below to represent the floor of the pool, a camera just below the waterline, looking at the floor, and a light source high above (see caustic2.pov).
The bumps we have given the water plane are meant to represent the small, random crests and troughs that form on a pool when a light breeze blows over it. We could have used ripples or waves as well, like something had recently splashed into it at some point, but the bumps will work well enough for an example.
We notice that our view of the pool floor shows dozens of tiny caustic light spots, corresponding approximately to a random bump pattern. If we like we can try putting in ripples or waves and watch the pattern of the caustics change. Even though a flat plane itself would cast no caustics (we could try without the normal), POV-Ray's faked caustic generation knows that if the surface was really bumped like this normal is indicating, the refraction of the bumped surface would be just enough to concentrate light in caustics throughout the bottom of the pool.
We see that just as with a curved surface, such as the sphere previously, normal patterns also trigger the appearance of caustics cast by an object. Interestingly enough, this alone would be proof that the caustics really are faked: our water hasn't even been given any refraction properties in its finish, yet the caustics are still there just the same!
Section 4.8.4.6
Using Faked Caustics
Section 4.8.4.6.1
What are Caustics?
Section 4.8.4.6.2
Applying Caustics to a Scene
The caustics in a swimming-pool.
Section 4.8.4.6.3
Caustics And Normals
Table Of Contents