Software Extensibility and
the System Object Model (SOM)

WWDC Release

May 1996
© Apple Computer, Inc. 1992-1996



Apple Computer, Inc.

© 1992-1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.

The Apple logo is a trademark of
Apple Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.

Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleScript, AppleShare,
AppleTalk, GeoPort, HyperCard,
ImageWriter, LocalTalk, Macintosh,
MacTCP, OpenDoc, PowerBook,
Power Macintosh, PowerTalk,
QuickTime, TrueType, and
WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.

Balloon Help, Chicago, Finder,
Geneva, Mac, and QuickDraw are
trademarks of Apple Computer, Inc.

IBM is a registered trademark of
International Business Machines
Corporation.

MacPaint and MacWrite are
registered trademarks, and
Clarisworks is a trademark, of Claris
Corporation.

NuBus is a trademark of Texas
Instruments.

PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.

UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Draft. O Apple Computer, Inc. 5/1/96

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..



CHAPTER 1

Software Extensibility and the
System Object Model (SOM)

Contents

The Need for Software Extensibility 1-4
The Object Oriented Approach to Extensibility 1-5
The Benefits of the System Object Model 1-6
Using the SOM Classes Provided by Mac OS 8 1-7
Using Unmodified SOM Classes 1-7
Modifying SOM Classes 1-8
Creating SOM Classes 19
Other Mechanisms for Extending Software in Mac OS 8 19
Shared Libraries 1-10
Collection Tags 1-11
The Patch Manager 1-11
Background-Only Programs 1-12

Contents
Draft. O Apple Computer, Inc. 5/1/96



1-2

CHAPTER 1

Contents
Draft. O Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

To make object-oriented libraries viable for extending software, Mac OS 8 uses
IBM'’s System Object Model (SOM), a new model for developing and
packaging object-oriented software. This document introduces you to where
and why Apple uses SOM classes in Mac OS 8 and what impact, if any, these
may have on your own software development.

The Apple implementation of the System Object Model is called SOMobjects
for Mac OS. In short, this technology provides Mac OS 8 with an
object-oriented mechanism for software extensibility without the drawbacks
commonly associated with object-oriented programming—in particular, the
inability to reuse binary code, and various language incompatibilities between
class libraries and the applications that use them.

In Mac OS 8, SOMobjects for Mac OS is used to implement

= interface definition objects (IDOs) for many standard user interface elements
such as windows and menus

= panels for other human interface elements such as controls, lists, and icons,
which incorporate such standard behaviors as keyboard navigation, copy
and paste, and drag and drop

= all Text Service Manager services, including interactive text services (like
spelling checkers) and text input methods (like user keyboard activity)

= runtime support for OpenDoc component software

By using SOMobjects for Mac OS, Mac OS 8 provides users with up-to-date
features and a consistent user interface across applications, system software
releases, and application revisions. SOMobjects for Mac OS benefits you and
your users in these main areas:

= When Apple adds new features to subsequent versions of the Mac OS, users
won’t need to update their software to gain these features, because
applications will automatically inherit them. For example, if Apple defines a
new capability for windows in a future version of the Mac OS, all Mac OS 8
applications would automatically gain this new capability. With SOMobjects
for Mac OS, Apple provides an easier way for you to keep your products up
to date.

= When applications enhance or modify portions of Mac OS 8, these
enhancements will be available to users even after Apple releases later
versions of the Mac OS. For example, an application can alter the default
behavior of a control provided by Mac OS 8 in one release, and this modified
behavior will continue to work in subsequent releases of the Mac OS. With

1-3
Draft. O Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

SOMobjects for Mac OS, Apple provides an easier way for you to extend
portions of Mac OS 8 while remaining compatible with future versions of the
Mac OS.

= SOMobjects for Mac OS provides you with an object-oriented approach to
extensibility in your own code. For example, you can create your own SOM
classes that can be easily altered and enhanced in subsequent updates to
your application.

The Code Fragment Manager forms the foundation of the Mac OS 8 runtime
environment. The Mac OS 8 implementation of SOM is layered on top of the
Code Fragment Manager. The SOM kernel—that is, the runtime portion of
SOMobjects for Mac OS—is an application-level shared library. Because the
SOM kernel is implemented as a standard application-level shared library, each
program using SOMobjects for Mac OS is completely independent from all
others. (The SOM kernel consists of the classes SOMObject, SOMClass, and
SOMClassMgr, their methods, and a number of class-independent functions
and macros. In Mac OS 8, the SOM kernel resides in two files: the runtime
shared library and the shared library referenced at link time.)

The Need for Software Extensibility

Extensible software is designed to be more easily expanded, modified, and
updated—either by its creator or by other programmers. Because the code that
creates and manages controls is extensible in Mac OS 8, for example, you can
easily tailor controls in a manner appropriate to your application to make them
more helpful to users, and Apple can easily modify or add new control
capabilities in later Mac OS releases.

Extensibility was given little consideration in the designs of earlier versions of
the Mac OS, but developers found ways to extend system software on their
own—with useful but sometimes unfortunate results for users. For example,
while all previous versions of the Macintosh Toolbox have provided useful
programming interfaces to help programs manage such human interface
elements as menus, many application developers needed features not provided
by the Macintosh Toolbox, so they wrote their own code to create such
extensions as pop-up menus and tear-off menus. Unfortunately, this sort of ad
hoc system software reengineering has caused a multitude of problems,
including

The Need for Software Extensibility
Draft. O Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

= inconsistency to users—as, for example, when they must learn the different
appearances and behaviors of all the custom implementations of tear-off
menus provided by many different applications

= unnecessary development work for you—as, for example, when you needed
to create your own version of tear-off menus instead of relying on code that
the Macintosh Toolbox could have provided

= additional testing and qualification burdens for you—as, for example, when
you needed to ensure that your own version of tear-off menus worked
correctly under a multitude of software and hardware configurations

= system and application instability—as, for example, when custom tear-off
menus created by other programmers (not by you, of course) did not work
correctly under certain software or hardware configurations, causing
programs to crash

= revision constraints for the Mac OS—as, for example, when you or others
created user interface elements that have made it difficult for Apple to
implement or update them in a uniform way across all applications

To help alleviate these problems, Mac OS 8 implements many capabilities in
more easily extensible SOM classes. Note that SOMobjects for Mac OS is not
the only mechanism Mac OS 8 provides for extending or updating software.
Other Mac OS 8 mechanisms are described at the end of this document.
However, SOMObjects for Mac OS does provide an ideal mechanism for
designing and packaging extensible software using object-oriented
programming techniques.

The Object Oriented Approach to Extensibility

As developers using object-oriented programming techniques know, object
classes facilitate the addition of features and capabilities to existing source
code. For example, without changing any other code in a drawing program,
you can override methods in the class for an object that draws itself as a
two-dimensional black-and-white square so that the object can instead draw
itself as a three-dimensional color cube.

However, commercial object-oriented languages such as C++ suffer because
they don’t support the reuse of binary code—they support the reuse of source
code only. For example, to make use of the object that can draw itself as a
three-dimensional cube, you would probably need to recompile the entire
application. To update users with this new three-dimensional drawing feature,

The Need for Software Extensibility 1-5
Draft. O Apple Computer, Inc. 5/1/96



1-6

CHAPTER 1

Software Extensibility and the System Object Model (SOM)

it would be much simpler if you could simply distribute an updated class
library instead of sending a completely recompiled application.

The Benefits of the System Object Model

The System Object Model (SOM) is most useful for providing an
object-oriented programming interface to a shared library. This model supports
data encapsulation, inheritance, and polymorphism—the key characteristics of
object-oriented programming.

However, unlike other class types (such as C++ classes), SOM classes provide
release-to-release binary compatibility. In the future, for example, Apple might
add new capabilities to the SOM class for the standard window IDOs. Apple
can easily update Mac OS 8 windows by replacing the binary library for a
window IDO, and—without being recompiled or relinked—applications will
automatically inherit the new window appearance and behaviors. Without the
System Object Model, it is difficult for programmers using one object-oriented
language to produce shared libraries for use by other object-oriented languages
while also maintaining binary compatibility from one release of a product to
the next.

While compilers for object-oriented languages produce class libraries that are
incompatible with different languages, the SOM approach to object-oriented
programming provides compiler and language independence. Binary class
libraries can be created in multiple languages—including procedural languages
like C as well as object-oriented languages like C++. These libraries, in turn,
can be used—and even subclassed—in different languages. For example, an
Apple engineer can use her favorite language to write a SOM class for

Mac OS 8, and you can use your favorite language to subclass and modify this
class. Better yet, an application written in another language can link with the
library for this newly modified class.

As you can begin to see, the System Object Model is not a complete
implementation language or programming system. Instead, it complements
existing languages with which you are already familiar and productive.

The Need for Software Extensibility
Draft. O Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

Using the SOM Classes Provided by Mac OS 8

The SOM classes provided by Mac OS 8 allow Apple to update elements of the
Mac OS without forcing users to reinstall all of system software. Applications
using those elements automatically incorporate the new features without
needing to be recompiled themselves. For example, if Apple updates the look
of windows in the future, all Mac OS 8 applications will automatically inherit
the updated look.

You can also use the SOM classes provided by Mac OS 8 to extend Mac OS 8
features. For example, if you find a compelling reason to create a new type of
control, you could subclass the panel for a standard control and override its
methods to provide the look and behavior you need for your application.

The majority of developers, however, will use the SOM classes provided by
Mac OS 8 without modifying them. To use the standard appearance and
behavior of windows, for example, you can use your preferred language,
which can be a procedural language like C and Pascal or an object-oriented
language like C++, to call the programming interfaces provided by the
Mac OS 8 Window Manager. The Window Manager in turn uses a standard
window IDO when called by your application. The IDO actually draws the
windows.

Using Unmodified SOM Classes

To incorporate an unmodified SOM class library, such as one of the standard
panels, you simply link the panel with the compiled version of your source
code to create a binary executable file.

Most developers won't need to modify any of the SOM classes provided by
Mac OS 8 because they incorporate most of the features that developers have
created for themselves in the past; for example, the Mac OS 8 Toolbox provides
such common (but previously nonstandard) interface features as floating
windows, keyboard equivalents in menus, and tear-off menus. (Even
applications that have already created these features in System 7.5 should
replace them with the Mac OS 8 versions so that application features all share a
consistent appearance, even when users switch between themes.)

Using the SOM Classes Provided by Mac OS 8 1-7
Draft. O Apple Computer, Inc. 5/1/96



1-8

CHAPTER 1

Software Extensibility and the System Object Model (SOM)

IMPORTANT

While the majority of developers won’t need to modify
SOM classes provided by Mac OS 8, a significant number
of developers probably will, in order to customize or
extend Mac OS 8 features. SOM classes may be created or
subclassed in any language for which a developer has a
SOM compiler. Therefore, if you develop compilers, Apple
hopes that you provide SOM compilers for the languages
your products support. a

Modifying SOM Classes

Only a minority of developers will need to alter the default behavior or
appearance of elements that are implemented as SOM classes in Mac OS 8. For
example, to create an entirely new control—such as, say, a throw switch—you
can subclass a controls panel and then override its drawing methods. You then
link the subclassed panel with your application.

The programming interface to an object class is described in the Interface
Definition Language (IDL), a language resembling C++. The IDL file for a class
specifies the names of the methods that it supports, its return types, its
parameter types, and other types of information. The IDL files for all SOM
classes in Mac OS 8 are available to you for development purposes.

To alter a class such as a standard panel, you can use an IDL compiler to
generate an implementation template file containing function definitions for
each method in the class. The IDL compiler provides emitters that output the
implementation template file in various programming languages, such as C
and C++. You modify the implementation template file to override any
methods for the class. You then use a SOM compiler to create an object file,
which you link to your application.

The Interface Definition Language provides a cross-language transportation
mechanism. On other platforms, IDL compilers are quickly being supplanted
by direct-to-SOM compilers that allow creation of SOM object files without the
interim steps involving the IDL compiler and IDL files. Apple hopes that you
will help make direct-to-SOM compilers available for Mac OS 8.

To create a subclassed control at runtime, the binary application file uses the
programming interfaces defined by the Control Manager, which in turn uses
the subclassed panel linked with the application.

Using the SOM Classes Provided by Mac OS 8

Draft.,, Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

Creating SOM Classes

SOMODbjects for Mac OS provides you with an object-oriented approach to
extensibility in your own code, too. You can package application features in
SOM classes, allowing you to more easily alter and enhance these features in
subsequent product revisions. For example, the developer of a tax-preparation
application could implement tax calculation code in SOM classes for easier
modification every year when the tax laws change.

Another benefit for you is that the System Object Model is an emerging
industry standard being implemented on most major operating systems. This
simplifies cross-platform development, because you can package application
code in SOM libraries, which are then easily ported across systems. For
example, the developer of a tax-preparation application could package the code
that performs tax calculations as SOM class libraries in Mac OS 8. The
developer would not need to revise these libraries when creating products that
run on other SOM-supportive operating systems.

To create a SOM class, you can create an IDL file using the Interface Definition
Language, use the IDL compiler to create an implementation template file, and
use a SOM compiler to create an object file to link with your application, or—as
direct-to-SOM compilers become available—you can use a direct-to-SOM
compiler to directly create the object file.

Other Mechanisms for Extending Software in Mac OS 8

SOMODbjects for Mac OS is not the only mechanism Mac OS 8 provides for
extending or updating software. Other ways that you can extend system
software include

= using Collection Manager collection tags

= calling Patch Manager functions

= creating background-only programs

Other ways that you can design extensibility into your own products include

= using OpenDoc components within your application

Creating SOM Classes 1-9
Draft. O Apple Computer, Inc. 5/1/96



1-10

CHAPTER 1

Software Extensibility and the System Object Model (SOM)

= separating code into replaceable, dynamically linked libraries

= separating your products into application programs and background-only
programs.

IMPORTANT

In System 7.5, developers often modify system software by
creating files of type "INIT" and patching a system trap
table to effect global changes for all applications. However,
Mac OS 8 does not support these System 7-type system
extensions. Because the Mac OS 8 runtime environment
includes a virtual memory system, multiple address
spaces, and concurrent processing (all of which make the
system highly dynamic), it does not clone a systemwide
global state when launching applications. Therefore, these
System 7-type system extensions are unable to
simultaneously modify system software for all
applications. a

The rest of this document introduces the extensibility capabilities of shared
libraries, collection tags, the Patch Manager, and background-only programs.
See the latest developer release of OpenDoc for more information about
creating OpenDoc components.

Note

The Apple Shared Library Manager (ASLM), a shared
library technology available on some earlier versions of the
Mac OS, is not supported in Mac OS 8. O

Shared Libraries

An application does not need to use SOMODbjects for Mac OS to extend or
update its code; it can instead add or replace code fragments packaged as
dynamically linked libraries. All executable code and associated data in

Mac OS 8 is packaged in shared libraries. The Code Fragment Manager, in turn,
loads these libraries into memory and prepares them for execution. (A
dynamically linked library is a shared library that exports code or data that can
be referenced by another fragment at execution time. All shared libraries,
including dynamically linked libraries, are created at program link time.)

Separating software into different, dynamically linked libraries simplifies
updating and extending the software. For example, if Apple wants to enhance

Other Mechanisms for Extending Software in Mac OS 8

Draft.,, Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

QuickDraw 3D in a later release of the Mac OS, Apple can simply replace the
library for QuickDraw 3D instead of releasing a new version of the entire
operating system. Similarly, you can divide your product into pieces that lend
themselves to periodic updates and package these pieces as separate,
dynamically linked libraries.

While dynamically linked libraries are useful for easily updating and
extending software, the Code Fragment Manager does not inherently support
object oriented interfaces. Built on top of the Code Fragment Manager,
SOMObjects for Mac OS does provide an ideal mechanism for designing and
packaging software when you want to use object-oriented programming
techniques as well as provide extensibility in your code.

Collection Tags

Many developers who use standard Mac OS 8 features may also need to add
their own data to these features—as, for example, when an application uses a
reference constant for identifying a window type. Because Mac OS 8 hides the
internal data structures for many of these features from programmers,

Mac OS 8 allows you to tag the features with data through the Collection
Manager programming interfaces, which were first made available with the
release of QuickDraw GX.

Collection tags are also an easy way for applications to change or enrich the
attributes of such user interface elements as menus and windows. For example,
an application can turn a regular menu into a tear-off menu by simply adding
the tear-off tag to the menu with a single Collection Manager call.

Mac OS 8 defines a standard set of collection tags—such as color, tear-off,
keyboard equivalent, and title-bar icon tags. An application can modify the
standard collection tags, and it can define custom collection tags—such as
sounds to play, special action procedures, and pieces of data—for its own use.

The Patch Manager

In versions of Mac system software that preceded Mac OS 8, developers often
modified the behavior of a particular system software manager by patching
routines in its trap table. In Mac OS 8, however, such patching is heavily
constrained.

Other Mechanisms for Extending Software in Mac OS 8 1-11
Draft. O Apple Computer, Inc. 5/1/96



1-12

CHAPTER 1

Software Extensibility and the System Object Model (SOM)

First of all, PowerPC processors do not use trap tables. Therefore, when
software patches A-traps, Mac OS 8 must emulate the 68K processor and an A5
world. This appreciably slows software performance.

Secondly, because of the Mac OS 8 runtime environment, it is very difficult to
set global state data with a patch, thereby constraining it to work reliably only
with local effect—that is, within only one process at time.

For these reasons, Apple discourages patching of system software routines.
However, it is clear from experience that patching is sometimes necessary.
Therefore Mac OS 8 supplies a Patch Manager that defines a new patching APL
When patching is necessary, this API simplifies your work and helps ensure
that your patch is made correctly.

Using the Patch Manager, you can patch system software routines for one
application at a time. A developer that packages a patch in a shared library and
makes it available to all applications on the system allows the patch to be
instantiated in every process that calls the library. However, even with the help
of the Patch Manager, it is very difficult for a patch to set global state data.

The file “Patch Manager” (in the folder Developer Documentation: OS
Documents) on this CD provides detailed information about Mac OS 8’s new
patching mechanism.

Background-Only Programs

You can also extend Mac OS 8 by using server processes to create
background-only programs. For example, you can create a background-only
program that watches for electronic mail and alerts users to the arrival of mail.
By supporting a server-client relationship with application programs, this
background-only program could also help users read and reply to mail from
within any application program. In this way, background-only programs can
extend Mac OS 8 with new or improved systemwide capabilities.

Similarly, you can enhance the extensibility of your products by separating
them into application programs that interact with users and background-only
programs that process data and perform time-consuming I/O and
compute-intensive operations. Then, for example, if you wanted to extend your
product’s user interface capabilities, you could replace your application
program and leave your compute-intensive programs untouched; likewise, you
could update the computer-intensive portions of your product and leave your
user interface portion alone.

Other Mechanisms for Extending Software in Mac OS 8
Draft. O Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

See the file “Intro to Kernel and OS Services” in the OS Documents folder on
this CD for more information about processes.

Other Mechanisms for Extending Software in Mac OS 8 1-13
Draft. O Apple Computer, Inc. 5/1/96



CHAPTER 1

Software Extensibility and the System Object Model (SOM)

1-14 Other Mechanisms for Extending Software in Mac OS 8
Draft. O Apple Computer, Inc. 5/1/96



	Software Extensibility and the System Object Model...
	Contents
	The Need for Software Extensibility
	The Object Oriented Approach to Extensibility
	The Benefits of the System Object Model

	Using the SOM Classes Provided by Mac�OS�8
	Using Unmodified SOM Classes
	Modifying SOM Classes

	Creating SOM Classes
	Other Mechanisms for Extending Software in Mac OS ...
	Shared Libraries
	Collection Tags
	The Patch Manager
	Background-Only Programs




